Doubly nilpotent numbers in the 2D plane
نویسندگان
چکیده
Dual numbers, split-quaternions, split-octonions, and other number systems with nilpotent spaces have received sporadic yet persistent interest, beginning from their roots in the 19th century, to more recent attention in connection with supersymmetry in physics. In this paper, a number system in the 2D plane is investigated, where the squares of its basis elements p and q each map into the coordinate origin. Modeled similar to an original concept by C. Musès, this new system will be termed “PQ space” and presented as a generalization of nilpotence and zero. Compared to the complex numbers, its multiplicative group and underlying vector space are equipped with as little as needed modifications to achieve the desired properties. The locus of real powers of basis elements p and q resembles a four-leaved clover, where the coordinate origin at (0,0) will not only represent the additive identity element, but also a map of “directed zeroes” from the multiplicative group. Algebraic and geometric properties of PQ space are discussed, and its naturalness advertised by comparison with other systems. The relation to Musès’ “p and q numbers” is shown and its differences defended. Next to possible applications and extensions, a new butterfly-shaped fractal is generated from a recursion algorithm of Mandelbrot type.
منابع مشابه
2D-Magnetic Field and Biaxiall In-Plane Pre-Load Effects on the Vibration of Double Bonded Orthotropic Graphene Sheets
In this study, thermo-nonlocal vibration of double bonded graphene sheet (DBGS) subjected to 2D-magnetic field under biaxial in-plane pre-load are presented. The elastic forces between layers of graphene sheet (GS) are taken into account by Pasternak foundation and the classical plate theory (CLPT) and continuum orthotropic elastic plate are used. The nonlocal theory of Eringen and Maxwell’s re...
متن کاملOn nilpotent subsemigroups in some matrix semigroups
We describe maximal nilpotent subsemigroups of a given nilpotency class in the semigroup Ωn of all n × n real matrices with nonnegative coefficients and the semigroup Dn of all doubly stochastic real matrices.
متن کاملNumerical Simulation of Free Surface in the Case of Plane Turbulent Wall Jets in Shallow Tailwater
Wall-jet flow is an important flow field in hydraulic engineering, and its applications include flow from the bottom outlet of dams and sluice gates. In this paper, the plane turbulent wall jet in shallow tailwater is simulated by solving the Reynolds Averaged Navier-Stokes equations using the standard turbulence closure model. This study aims to explore the ability of a time splitting method ...
متن کاملOrr Sommerfeld Solver Using Mapped Finite Di?erence Scheme for Plane Wake Flow
Linear stability analysis of the three dimensional plane wake flow is performed using a mapped finite di?erence scheme in a domain which is doubly infinite in the cross–stream direction of wake flow. The physical domain in cross–stream direction is mapped to the computational domain using a cotangent mapping of the form y = ?cot(??). The Squire transformation [2], proposed by Squire, is also us...
متن کاملTwo Characteristic Numbers for Smooth Plane Curves of Any Degree
We use a sequence of blow-ups over the projective space parametrizing plane curves of degree d to obtain some enumerative results concerning smooth plane curves of arbitrary degree. For d = 4 , this gives a first modem verification of results of H. G. Zeuthen. O. INTRODUCTION The kth 'characteristic number' of the d(dt3) -dimensional family of smooth plane curves of degree d, denoted Nd(k) in t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Applied Mathematics and Computation
دوره 217 شماره
صفحات -
تاریخ انتشار 2011